Trong các bài toán chứng minh bất đẳng thức có lẽ các bài toán bất đẳng thức chứa căn là một trong những dạng toán hay và thú vị nhất .Đơn giản là chúng ta không thể dùng các phép biến đổi thông thường để chứng minh bài toán và như thế mới thúc đẩy các ý tưởng mới được.Trong các phương pháp chứng minh dạng toán này không thể không nhắc tới phương pháp dồn biến thừa trừ của anh Võ Quốc Bá Cẩn.Ý tưởng của phương pháp rất đơn giản nhưng điều đơn giản này lại giúp chúng ta giải quyết rất nhiều bất đẳng thức khó,trong đó có một số kết quả từng là những bài toán mở.Trong bài viết này xin được giới thiệu thêm một số bài toán có thể giải bằng phương pháp này.
Bài toán 1 Võ Quốc Bá Cẩn
Cho các số thực không âm



Lời giải
Không mất tổng quát giả sử rằng:

Đặt

Ta sẽ chứng minh rằng:

Để chứng minh điều này,đầu tiên ta chứng minh kết quả sau:

Bình phương hai vế và sử dụng đẳng thức:


Hay là

Sử dụng bất đẳng thức Minkowski có :

Sử dụng kết quả này và giả thiết:




Điều này hiển nhiên đúng với

Để hoàn thành bước dồn biến ,ta chỉ cần chứng minh:


Chú ý rằng




Mặt khác


Và

Cuối cùng,ta chỉ cần chứng minh rằng:


Ta có

Bài toán được chứng minh xong.Đẳng thức xảy ra

Nhận xét
- Bước chứng minh

là mấu chốt trong lời giải bài toán này.Kết quả này giúp cho bước dồn biến đơn giản hơn rất nhiều do bớt đi được được một biểu thức chứa căn và như thế cũng làm cho việc tính toán trở nên đơn giản hơn.Nếu trực tiếp chứng minh kết quả

-Sử dụng kết quả này ta có thể chứng minh kết quả sau:
Cho các số thực không âm



Bài toán 2 Quykhtn
Cho tam giác




Lời giải
Viết bất đẳng thức cần chứng minh dưới dạng tương đương sau:

Không mất tổng quát giả sử rằng

Kí hiệu

Ta sẽ chứng minh:

Để chứng minh kết quả này,đầu tiên ta chứng minh kết quả sau:

Bình phương hai vế và sử dụng đẳng thức:


tương đương

Chú ý rằng


Như vậy ta chỉ cần chứng minh rằng:

Điều này luôn đúng với

Để hoàn thành bước dồn biến ta phải chứng minh:

Tương đương

Tương đương

Dễ thấy


Do đó


Bây giờ xét biểu thức:

Dễ thấy





Như vậy

Vậy để chứng minh bài toán ta chỉ cần chứng minh:

tương đương

Đặt


Bất đẳng thức cần chứng minh trở thành:

tương đương

tương đương

tương đương


Chú ý rằng:


Mặt khác:

Bài toán được chứng minh xong.
Đẳng thức xảy ra

Nguồn: artofproblemsolving.com
No comments:
Post a Comment