Translate

Wednesday, January 14, 2015

 Bài toán: (VMO 2015 pro. 5) Cho $(f_n(x))$ là dãy các đa thức xác định bởi: $$\begin{cases} f_0(x)=2,\, f_1(x)=3x\\ f_n(x)=3xf_{n-1}(x)+(1-x-2x^2)f_{n-2}(x)\end{cases}$$ Tìm tất cả các số nguyên dương $n$ để $f_n(x)$ chia hết cho đa thức $x^3-x^2+x$

Lời giải: 

   Xét phương trình đặc trưng: $$t^2-3xt-(1-x-2x^2)=0$$ Giải phương trình này ta tìm được hai nghiệm $$\begin{cases}t_1=x+1\\t_2=2x-1\end{cases}$$ Suy ra: $f_n(x)=A(x+1)^n+B(2x-1)^n$. Cho $n=0, n=1$ ta có hệ: $$\begin{cases}A+B=2\\(x+1)A+(2x-1)B=3x\end{cases}\Leftrightarrow \begin{cases}A=1\\B=1\end{cases}$$ Vậy, ta được $$f_n(x)=(x+1)^n+(2x-1)^n$$ Nếu $n$ chẳn, thì $f_n(x)\equiv 2\pmod{x}$ mà $x^3-x^2+x\equiv 0\pmod{x}$ nên trường hợp này không thể xảy ra. Tức là $n$ lẻ.
   Ta nhận thấy: $$(x+1)^3=x^3+3x^2+3x+1=x^3-x^2+x+4x^2+2x+1\equiv 4x^2+2x+1\equiv \pmod{x^3-x^2+x}\\(2x-1)^3=8x^3-12x^2+6x-1=8(x^3-x^2+x)-4x^2-2x-1\equiv -4x^2-2x-1\pmod{x^3-x^2+x}$$ 
 Xét các trường hợp: 
    Trường hợp 1: $n=3k+1$, $k$ chẵn. Khi đó, ta có: $$\begin{aligned}f_n(x)&=(x+1)^{3k+1}+(2x-1)^{3k+1}\\&=(x^3+3x^2+3x+1)^k(x+1)+(8x^3-12x^2+6x-1)^k(2x-1)\\&\equiv (4x^2+2x+1)^k(x+1)+(-4x^2-2x-1)^k(2x-1)\\&\equiv 3x(4x^2+2x+1)^k\not\equiv 0\pmod{x^3-x^2+x}\end{aligned}$$
    Trường hợp 2: $n=3k+2$, $k$ lẻ. Khi đó, ta có $$\begin{aligned}f_n(x)&=(x+1)^{3k+2}+(2x-1)^{3k+2}\\&=(x^3+3x^2+3x+1)^k(x^2+2x+1)+(8x^3-12x^2+6x-1)^k(4x^2-4x+1)\\&\equiv (4x^2+2x+1)^k(x^2+2x+1)+(-4x^2-2x-1)^k(4x^2-4x+1)\\&\equiv (4x^2+2x+1)^k(x^2+2x+1-4x^2+4x-1)\\&\equiv (4x^2+2x+1)^k(-3x^2+6x)\\&\not\equiv 0\pmod{x^3-x^2+x}\end{aligned}$$
    Trường hợp 3: $n=3(2k+1),k\in\mathbb{N}$. khi đó ta có: $$\begin{aligned}f_n(x)&=(x+1)^{3(2k+1)}+(2x-1)^{3(2k+1)}\\& =(x^3+3x^2+3x+1)^{2k+1}+(8x^3-12x^2+6x-1)^{2k+1}\\&\equiv (4x^2+2x+1)^{2k+1}+(-4x^2-2x-1)^{2k+1}\\&\equiv 0\pmod{x^3-x^2+x}\end{aligned}$$
 Cuối cùng, ta được kết quả: $$\boxed{n=3(2k+1),k\in\mathbb{N}}$$

Sunday, January 4, 2015

Phương tích- hàng điều hòa

Bài toán: Cho tam giác nhọn $ABC$ và một đường tròn thay đổi qua $B, C$ cắt $AB, AC$ tại $M, N$. Gọi $P$ là giao điểm của $BN$ và $CM$, $Q,T$ là giao điểm của $AP, MN$ với $BC$. Đường thẳng qua $Q$ và song song với $MN$ gặp $AB, AC$ lần lượt tại $R, S$.
      a. Chứng minh rằng: đường tròn ngoại tiếp tam giác $BKN$ luôn đi qua điểm cố định.
      b.Gọi $K$ là trực tâm tam giác $AMN$. Đặt $BC=a, d$ là khoảng cách từ $A$ tới $PK$. Chứng minh rằng, $d\le a. \cot A$


Lời giải:
     a. Ta có $RS || MN$ nên $\angle BRS=\angle TMb=180^o-\angle BMN=\angle BCS$, hay tứ giác $BSCR$ nội tiếp, suy ra: $$\overline{QB}.\overline{QC}=\overline{QR}.\overline{QS}$$ Mặt khác, ta lại có $(BCQT)=-1$, Gọi $E$ là trung điểm $BC$, theo hệ thức Maclaurin ta có: $$\overline{QT}.\overline{QW}=\overline{QB}.\overline{QC}$$ Từ đây suy ra: $\overline{QT}.\overline{QE}=\overline{QR}.\overline{QS}$, tức là $T, R, S, E$ đồng viên hay nói cách khác đường tròn $(TRS)$ luôn đi qua trung điểm $E$ cố định của $BC$.
   b. Ký hiệu $(XY)$ là dùng để chỉ đường tròn có đường kính $XY$. Gọi $B', C'$ là hình chiếu của $B, C$ lên $AB, AC$. Khi đó, dễ thấy $B'\in (BN),\, C'\in (CM)$.
   Ta có: $\Delta B'C'H\sim \Delta CBH$ nên: $$\overline{HB'}.\overline{HB}=\overline{HC'}.\overline{HC}$$ Suy ra $H$ nằm trên trục đẳng phương của hai đường tròn $(BN)$ và $(CM)$. Tương tự, ta cũng chứng minh được $K$ nằm trên trục đẳng phương của $(BN)$ và $(CM)$.
  Mặt khác, ta lại có $\overline{PM}.\overline{PC}=\overline{PN}.\overline{PB}$ nên $P$ nằm trên trục đẳng phương của $(BN) $ và $(CM)$. Vậy, $P, K, H$ thẳng hàng, suy ra: $d\le AH$. Kết hợp với: $$AH=\dfrac{AB'}{\sin\angle AHB'}=\dfrac{AB'}{\sin\angle ACB}=BC.\dfrac{AB'}{BB'}=BC.\cot A$$ Tóm lại, ta có được: $d\le a.\cot A$
   Bài toán được chứng minh hoàn toàn.