Bài toán: (Đề kiểm tra đội tuyển HSG trường Chuyên Long An)
Tìm tất cả các hàm số $f:\mathbb{R}\to\mathbb{R}$ thỏa mãn: $$f(x^2)=f(y).f(2x-y)+(y-x)^2,\forall x, y \in\mathbb{R}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(*)$$ Lời giải: Trong $(*)$ cho $x=y$ ta được: $$f(x^2)=f^2(x),\forall x\in\mathbb{R}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)$$ Trong $(1)$ lấy $x=0$ ta được $f(0)=0\vee f(0)=1$.
Trường hợp 1: $f(0)=0$, trong $(*)$ cho $y=0$ ta được: $$\begin{aligned}&\;\;\;\;f(x^2)=x^2\\&\Leftrightarrow f^2(x)=x^2, \forall x\in\mathbb{R}\end{aligned}$$
Từ đây suy ra $f(x)=x$ hoặc $f(x)=-x$. Thử lại ta thấy chỉ có hàm số $f(x)=x,\forall x\in\mathbb{R}$ thỏa mãn bài toán.
Trường hợp 2: $f(0)=1$, trong $(*)$ cho $y=0$, ta được: $$f(x^2)=f(2x)+x^2,\forall x\in\mathbb{R}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)$$ Trong $(*)$ thay $y$ bởi $x-y$ ta được: $$f(x^2)=f(x-y)f(x+y)+y^2,\forall x,y\in\mathbb{R}\;\;\;\;\;\;\;\;\;\;\;\;\;(3)$$ Kết hợp $(2)$ và $(3)$ ta được: $$f(2x)+x^2=f(x+y).f(x-y)+y^2,\forall x, y\in\mathbb{R}$$ Đặt $a=x+y,\;b=x-y, \;a,b\in\mathbb{R}$ ta được: $$f(a+b)+ab=f(a).f(b),\forall a,b\in\mathbb{R}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(4)$$ Trong $(*)$, ta thay $y$ bởi $b$, $2x-y$ bởi $a$, ta được: $$f\left(\dfrac{(a+b)^2}{4}\right)=f(a).f(b)-\dfrac{(a-b)^2}{4},\forall a, b\in\mathbb{R}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(5)$$ Kết hợp $(4)$ và $(5)$ ta được: $$\begin{aligned}&\;\;\;f(a+b)+ab=f\left(\dfrac{(a+b)^2}{4}\right)-\dfrac{(a-b)^2}{4},\forall a, b\in\mathbb{R}\\&\Leftrightarrow 4f(a+b)=4f\left(\dfrac{(a+b)^2}{4}\right)-(a+b)^2,\forall a,b\in\mathbb{R}\;\;\;\;\;\;\;\;\;(6)\end{aligned}$$ Trong $(6)$ cho $a+b=4$ ta được $-4^2=0$, vô lý.
Vậy chỉ có hàm số thỏa mãn bài toán: $$f(x)=x,\forall x\in\mathbb{R}$$
Đừng sợ hãi khi phải đối đầu với một đối thủ mạnh hơn, mà hãy vui mừng vì bạn đã có cơ hội để chiến đấu hết mình
Wednesday, May 20, 2015
Sunday, May 3, 2015
Using S-S method in prove inequality
Bài toán: Cho $x, y, z$ là các số thực không âm thỏa mãn $2x+3y+z=1$. Tìm GTNN của: $$P=4x^2+9y^2+z^2+24xyz$$ Lời giải:
Thực hiện đổi biến $\left(x,y,z\right)\rightarrow \left(\dfrac{x}{2},\dfrac{y}{3}, z\right)$. Khi đó ta có $x+y+z=1$ đồng thời: $$P=x^2+y^2+z^2+4xyz$$ Chú ý rằng $x+y+z=1$ nên ta có: $$\begin{aligned}P&=\dfrac{x^2+y^2+z^2}{(x+y+z)^2}+\dfrac{4xyz}{(x+y+z)^3}=\dfrac{x^2+y^2+z^2}{(x+y+z)^2}-\dfrac{1}{3}+\dfrac{4xyz}{(x+y+z)^3}-\dfrac{4}{27}+\dfrac{13}{27}\\&=\dfrac{3(x^2+y^2+z^2)-(x+y+z)^2}{3(x+y+z)^2}-4.\dfrac{(x+y+z)^3-27xyz}{27(x+y+z)^3}+\dfrac{13}{27}\\&=\dfrac{2[(x-y)^2+(x-z)(y-z)]}{3(x+y+z)^2}-4.\dfrac{(x+y+z)[(x-y)^2+(x-z)(y-z)]+3[(2z(x-y)^2+(x+y)(x-z)(y-z)]}{27(x+y+z)^3}+\dfrac{13}{27}\\&=M(x-y)^2+N(x-z)(y-z)+\dfrac{13}{27}\end{aligned}$$
Trong đó: $$\begin{aligned} M&=\dfrac{2}{3(x+y+z)^2}-\dfrac{4(x+y+z+6z)}{27(x+y+z)^3}\\&=\dfrac{18(x+y+z)-4(x+y+z)-24z}{27(x+y+z)^3}=\dfrac{14-24z}{27}\\\\N&=\dfrac{18(x+y+z)-4(x+y+z+3x+3y)}{27(x+y+z)^3}\\&=\dfrac{14(x+y+z)-12(x+y)}{27(x+y+z)^3}=\dfrac{2+12z}{27}\end{aligned}$$ Ngoài ra, chú ý rằng sau khi thực hiện phép đổi biến thì vai trò $x,y,z$ là như nhau nên ta hoàn toàn có thể giải sử $z=\min\{x,y,z\}$ do đó $M, N>0$. Từ đó suy ra: $$P=M(x-y)^2+N(x-z)(y-z)+\dfrac{13}{27}\ge \dfrac{13}{27}$$ Dấu ''='' xảy ra khi và chỉ khi $\begin{cases}x+y+z=1\\x=y=z\end{cases}\text{ hay}\begin{cases}2x+3y+z=1\\2x=3y=z=\dfrac{1}{3}\end{cases} \Leftrightarrow (x,y,z)=\left(\dfrac{1}{6},\dfrac{1}{9},\dfrac{1}{3}\right)$
Kết luận: $$\boxed{\min P=\dfrac{13}{27}}$$
Thực hiện đổi biến $\left(x,y,z\right)\rightarrow \left(\dfrac{x}{2},\dfrac{y}{3}, z\right)$. Khi đó ta có $x+y+z=1$ đồng thời: $$P=x^2+y^2+z^2+4xyz$$ Chú ý rằng $x+y+z=1$ nên ta có: $$\begin{aligned}P&=\dfrac{x^2+y^2+z^2}{(x+y+z)^2}+\dfrac{4xyz}{(x+y+z)^3}=\dfrac{x^2+y^2+z^2}{(x+y+z)^2}-\dfrac{1}{3}+\dfrac{4xyz}{(x+y+z)^3}-\dfrac{4}{27}+\dfrac{13}{27}\\&=\dfrac{3(x^2+y^2+z^2)-(x+y+z)^2}{3(x+y+z)^2}-4.\dfrac{(x+y+z)^3-27xyz}{27(x+y+z)^3}+\dfrac{13}{27}\\&=\dfrac{2[(x-y)^2+(x-z)(y-z)]}{3(x+y+z)^2}-4.\dfrac{(x+y+z)[(x-y)^2+(x-z)(y-z)]+3[(2z(x-y)^2+(x+y)(x-z)(y-z)]}{27(x+y+z)^3}+\dfrac{13}{27}\\&=M(x-y)^2+N(x-z)(y-z)+\dfrac{13}{27}\end{aligned}$$
Trong đó: $$\begin{aligned} M&=\dfrac{2}{3(x+y+z)^2}-\dfrac{4(x+y+z+6z)}{27(x+y+z)^3}\\&=\dfrac{18(x+y+z)-4(x+y+z)-24z}{27(x+y+z)^3}=\dfrac{14-24z}{27}\\\\N&=\dfrac{18(x+y+z)-4(x+y+z+3x+3y)}{27(x+y+z)^3}\\&=\dfrac{14(x+y+z)-12(x+y)}{27(x+y+z)^3}=\dfrac{2+12z}{27}\end{aligned}$$ Ngoài ra, chú ý rằng sau khi thực hiện phép đổi biến thì vai trò $x,y,z$ là như nhau nên ta hoàn toàn có thể giải sử $z=\min\{x,y,z\}$ do đó $M, N>0$. Từ đó suy ra: $$P=M(x-y)^2+N(x-z)(y-z)+\dfrac{13}{27}\ge \dfrac{13}{27}$$ Dấu ''='' xảy ra khi và chỉ khi $\begin{cases}x+y+z=1\\x=y=z\end{cases}\text{ hay}\begin{cases}2x+3y+z=1\\2x=3y=z=\dfrac{1}{3}\end{cases} \Leftrightarrow (x,y,z)=\left(\dfrac{1}{6},\dfrac{1}{9},\dfrac{1}{3}\right)$
Kết luận: $$\boxed{\min P=\dfrac{13}{27}}$$
Subscribe to:
Posts (Atom)