Processing math: 100%

Translate

Friday, August 7, 2015

Bài toán (Nguyễn Đình Thi) Chứng minh rằng với mọi a,b,c\in\mathbb{R} thì \left(\dfrac{a^2+bc}{a^2-bc}\right)^2+\left(\dfrac{b^2+ca}{b^2-ca}\right)^2+\left(\dfrac{c^2+ab}{c^2-ab}\right)^2\ge 2 
Lời giải: 
Đặt x=\dfrac{a^2+bc}{a^2-bc}, y=\dfrac{b^2+ca}{b^2-ca},z=\dfrac{c^2+ab}{c^2-ab} Khi đó, ta có: (x+1)(y+1)(z+1)=(x-1)(y-1)(z-1)\Leftrightarrow xy+yz+zx=-1 Áp dụng BDT x^2+y^2+z^2\ge -2(xy+yz+zx) Ta có \left(\dfrac{a^2+bc}{a^2-bc}\right)^2+\left(\dfrac{b^2+ca}{b^2-ca}\right)^2+\left(\dfrac{c^2+ab}{c^2-ab}\right)^2\ge 2 Ta có đpcm.


Problem (Nguyen Dinh Thi) Let a, b, c be real numbers. Prove that: \left(\dfrac{a^2+bc}{a^2-bc}\right)^2+\left(\dfrac{b^2+ca}{b^2-ca}\right)^2+\left(\dfrac{c^2+ab}{c^2-ab}\right)^2\ge 2 Proof: 
Let x=\dfrac{a^2+bc}{a^2-bc}, y=\dfrac{b^2+ca}{b^2-ca},z=\dfrac{c^2+ab}{c^2-ab} Then,  we have: (x+1)(y+1)(z+1)=(x-1)(y-1)(z-1)\Leftrightarrow xy+yz+zx=-1 Using this inequality: x^2+y^2+z^2\ge -2(xy+yz+zx) We have: \left(\dfrac{a^2+bc}{a^2-bc}\right)^2+\left(\dfrac{b^2+ca}{b^2-ca}\right)^2+\left(\dfrac{c^2+ab}{c^2-ab}\right)^2\ge 2\;\;\text{(Q.E.D)} 

No comments: