Translate

Thursday, July 30, 2015

Bài toán: Cho $n$ là số nguyên dương. Tìm số đa thức $P(x)$ có hệ số thực thuộc $\{ 0, 1, 2, 3\}$ thỏa mãn $P(2)=n$.
Lời giải: 
Giả sử: $$P(x)=a_0+a_1x+a_2x^2+a_3x^3+...., \; \text{với } a_i\in\{ 0, 1, 2, 3\}$$ Do $P(2)=n$ nên $$a_0+2a_1+4a_2+...+2^ia_i+...=n\;\;\;\;\;\;\;\;\;\;\;\;(*)$$ Ta xây dựng hàm sinh cho phương trình $(*)$: $$\begin{aligned} G(x)&=\prod_{i\ge 0}\left( 1+x^{2^k}+x^{2.{2^k}}+x^{3.2^k}\right)\\&=\prod_{i\ge 0}\dfrac{1-(x^{2^k})^4}{1-x^{2^k}}\\&=\prod_{i\ge 0}\dfrac{1-x^{2^{k+2}}}{1-x^{2^k}}\\&=\dfrac{1}{(1-x)(1-x^2)}\\&=\dfrac{1}{4(1-x)}+\dfrac{1}{4(1+x)}+\dfrac{1}{2(1-x)^2}=\sum_{i\ge 0}\left( \dfrac{1}{4}+\dfrac{1}{4}(-1)^i+\dfrac{1}{2}C^{i}_{i+1}\right) x^i\end{aligned}$$ Số đa thức thỏa mãn bài toán cũng chính là hệ số của $x^n$ trong khai triển trên: $$\left[\dfrac{2n+3+(-1)^n}{4}\right]=\left[\dfrac{n}{2}\right]+1$$

No comments: