Translate

Sunday, July 26, 2015

Bài toán: (Olympic 30/04/2015 - Khối 11) Cho $a,b,c$ là các số nguyên tố. Đặt $x=a+b-c,y=a+c-b,z=b+c-a$. Giả sử rằng $x^2=y$ và hiệu $\sqrt{z}-\sqrt{y}$ là bình phương của một số nguyên tố. Tính giá trị biểu thức: $$T=(a+2)(b-10)(c+2)$$
Lời Giải: 
Gọi $p$ là số nguyên tố sao cho $$\begin{aligned}&\sqrt{z}-\sqrt{y}=p^2\\\Leftrightarrow &z+y-2\sqrt{yz}=p^4\\\Leftrightarrow &2c-2\sqrt{(c+a-b)(b+c-a)}=p^4\end{aligned}$$ Từ đây suy ra $2\;|\; p\Rightarrow p=2$. Ta có hệ: $$\begin{cases}c-\sqrt{(c+a-b)(b+c-a)}=8\\(a+b-c)^2=c+a-b\end{cases}$$ Ta biến đổi PT đầu: $$\begin{aligned}& (c+a-b)(a+b-c)=(c-8)^2\\\Leftrightarrow &c^2-(a-b)^2=(c-8)^2\\\Leftrightarrow & (c-8)^2+(a-b)^2=c^2\end{aligned}$$ Xem đây là phương trình Pythargores, chú ý rằng $\gcd{(c-8, c, a-b)}=1$ (vì $a,b,c$ nguyên tố) nên:

     + Trường hợp 1: $\begin{cases} c-8=2mn\\a-b=m^2-n^2\\c=m^2+n^2\end{cases}\; (m,n\in\mathbb{N})$ Do $c$ nguyên tố mà lúc này $2\;|\; c$ nên $c=2$. Như vậy: $$(a+b-2)^2=a-b+2$$ Vì $\gcd{(c-8, a-b, c)}=1$ nên $a,b$ khác tính chẵn lẻ. Tuy nhiên khi $a=2\vee b=2$ thì hệ đều không thỏa mãn.

     + Trường hợp 2: $\begin{cases}a-b=2mn\\c-8=m^2-n^2\\c=m^2+n^2\end{cases}(m,n\in\mathbb{N})$ Từ đây suy ra luôn $n=2\Rightarrow \begin{cases}c=m^2+4\\a-b=4m\end{cases}$ Thay vào hệ trên ta được: $$(a+b-m^2-4)^2=(m+2)^2$$
          $\bullet $ Khả năng 1: $a+b-m^2-4=m+2\Leftrightarrow a+b=m^2+m+6$. Kết hợp với $a-b=4m$ suy ra: $$\begin{cases}a=\dfrac{(m^2+5m+6}{2}\\b=\dfrac{m^2-3m+6}{2}\end{cases}$$ Đặt $m=2k+1,k\in\mathbb{Z}$ Suy ra $a=(k+2)(2k+3)$ Do $a$ nguyên tố nên $$2k+1=^+_- 1\vee k+2=^+_-1\Rightarrow k=-3\Rightarrow a=3, b=23, c=29\Rightarrow \boxed{T=2015}$$
     
         $\bullet $ Khả năng 2: $a+b-m^2-4=-m-2\Leftrightarrow a+b=m^2-m+2$. Suy ra: $$\begin{cases} a=\dfrac{m^2+2m+2}{2}\\b=\dfrac{m^2-5m+2}{2}\end{cases}$$ Đặt $m=2k+1, k\in\mathbb{Z}$ Suy ra $a=(k+1)(2k+3)$ Tương tự ta cũng có $2k+3=^+_- 1\vee k+1=^+_- 1$ Tuy nhiên  lúc này ta không nhận được giá trị $a, b, c$ nguyên tố nào.

Tóm lại $$\boxed{T=2015}$$

No comments: